\(\int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx\) [811]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 119 \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {17 a^3 x}{2}-\frac {6 a^3 \cos (c+d x)}{d}+\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {2 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}-\frac {25 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))}-\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d} \]

[Out]

17/2*a^3*x-6*a^3*cos(d*x+c)/d+1/3*a^3*cos(d*x+c)^3/d+2/3*a^3*cos(d*x+c)/d/(1-sin(d*x+c))^2-25/3*a^3*cos(d*x+c)
/d/(1-sin(d*x+c))-3/2*a^3*cos(d*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2788, 2729, 2727, 2718, 2715, 8, 2713} \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {a^3 \cos ^3(c+d x)}{3 d}-\frac {6 a^3 \cos (c+d x)}{d}-\frac {3 a^3 \sin (c+d x) \cos (c+d x)}{2 d}-\frac {25 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))}+\frac {2 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}+\frac {17 a^3 x}{2} \]

[In]

Int[(a + a*Sin[c + d*x])^3*Tan[c + d*x]^4,x]

[Out]

(17*a^3*x)/2 - (6*a^3*Cos[c + d*x])/d + (a^3*Cos[c + d*x]^3)/(3*d) + (2*a^3*Cos[c + d*x])/(3*d*(1 - Sin[c + d*
x])^2) - (25*a^3*Cos[c + d*x])/(3*d*(1 - Sin[c + d*x])) - (3*a^3*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2788

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Dist[a^p, Int[Expan
dIntegrand[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^(m - p/2)/(a - b*Sin[e + f*x])^(p/2)), x], x], x] /; FreeQ[{a,
 b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0])

Rubi steps \begin{align*} \text {integral}& = a^4 \int \left (\frac {7}{a}+\frac {2}{a (-1+\sin (c+d x))^2}+\frac {9}{a (-1+\sin (c+d x))}+\frac {5 \sin (c+d x)}{a}+\frac {3 \sin ^2(c+d x)}{a}+\frac {\sin ^3(c+d x)}{a}\right ) \, dx \\ & = 7 a^3 x+a^3 \int \sin ^3(c+d x) \, dx+\left (2 a^3\right ) \int \frac {1}{(-1+\sin (c+d x))^2} \, dx+\left (3 a^3\right ) \int \sin ^2(c+d x) \, dx+\left (5 a^3\right ) \int \sin (c+d x) \, dx+\left (9 a^3\right ) \int \frac {1}{-1+\sin (c+d x)} \, dx \\ & = 7 a^3 x-\frac {5 a^3 \cos (c+d x)}{d}+\frac {2 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}-\frac {9 a^3 \cos (c+d x)}{d (1-\sin (c+d x))}-\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d}-\frac {1}{3} \left (2 a^3\right ) \int \frac {1}{-1+\sin (c+d x)} \, dx+\frac {1}{2} \left (3 a^3\right ) \int 1 \, dx-\frac {a^3 \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {17 a^3 x}{2}-\frac {6 a^3 \cos (c+d x)}{d}+\frac {a^3 \cos ^3(c+d x)}{3 d}+\frac {2 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}-\frac {25 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))}-\frac {3 a^3 \cos (c+d x) \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.23 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.49 \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {(a+a \sin (c+d x))^3 \left (102 (c+d x)-69 \cos (c+d x)+\cos (3 (c+d x))+\frac {8}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {16 \sin \left (\frac {1}{2} (c+d x)\right )}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}-\frac {200 \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}-9 \sin (2 (c+d x))\right )}{12 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6} \]

[In]

Integrate[(a + a*Sin[c + d*x])^3*Tan[c + d*x]^4,x]

[Out]

((a + a*Sin[c + d*x])^3*(102*(c + d*x) - 69*Cos[c + d*x] + Cos[3*(c + d*x)] + 8/(Cos[(c + d*x)/2] - Sin[(c + d
*x)/2])^2 + (16*Sin[(c + d*x)/2])/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3 - (200*Sin[(c + d*x)/2])/(Cos[(c + d
*x)/2] - Sin[(c + d*x)/2]) - 9*Sin[2*(c + d*x)]))/(12*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6)

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.13

method result size
parallelrisch \(\frac {a^{3} \left (612 d x \cos \left (d x +c \right )+204 d x \cos \left (3 d x +3 c \right )+\cos \left (6 d x +6 c \right )-9 \sin \left (5 d x +5 c \right )-66 \cos \left (4 d x +4 c \right )-705 \cos \left (2 d x +2 c \right )-227 \sin \left (3 d x +3 c \right )-960 \cos \left (d x +c \right )-90 \sin \left (d x +c \right )-320 \cos \left (3 d x +3 c \right )-510\right )}{24 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(134\)
risch \(\frac {17 a^{3} x}{2}+\frac {3 i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {23 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 d}-\frac {23 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}-\frac {3 i a^{3} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {2 \left (-48 i a^{3} {\mathrm e}^{i \left (d x +c \right )}+27 a^{3} {\mathrm e}^{2 i \left (d x +c \right )}-25 a^{3}\right )}{3 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d}+\frac {a^{3} \cos \left (3 d x +3 c \right )}{12 d}\) \(149\)
norman \(\frac {-\frac {17 a^{3} x}{2}+\frac {80 a^{3}}{3 d}+\frac {17 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {17 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {54 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {32 a^{3} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {54 a^{3} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {17 a^{3} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {17 a^{3} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {51 a^{3} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {51 a^{3} x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {17 a^{3} x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {80 a^{3} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}\) \(248\)
derivativedivides \(\frac {a^{3} \left (\frac {\sin ^{8}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {5 \left (\sin ^{8}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {5 \left (\frac {16}{5}+\sin ^{6}\left (d x +c \right )+\frac {6 \left (\sin ^{4}\left (d x +c \right )\right )}{5}+\frac {8 \left (\sin ^{2}\left (d x +c \right )\right )}{5}\right ) \cos \left (d x +c \right )}{3}\right )+3 a^{3} \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+3 a^{3} \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+a^{3} \left (\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}-\tan \left (d x +c \right )+d x +c \right )}{d}\) \(266\)
default \(\frac {a^{3} \left (\frac {\sin ^{8}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {5 \left (\sin ^{8}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {5 \left (\frac {16}{5}+\sin ^{6}\left (d x +c \right )+\frac {6 \left (\sin ^{4}\left (d x +c \right )\right )}{5}+\frac {8 \left (\sin ^{2}\left (d x +c \right )\right )}{5}\right ) \cos \left (d x +c \right )}{3}\right )+3 a^{3} \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+3 a^{3} \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+a^{3} \left (\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}-\tan \left (d x +c \right )+d x +c \right )}{d}\) \(266\)

[In]

int(sec(d*x+c)^4*sin(d*x+c)^4*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/24/d*a^3*(612*d*x*cos(d*x+c)+204*d*x*cos(3*d*x+3*c)+cos(6*d*x+6*c)-9*sin(5*d*x+5*c)-66*cos(4*d*x+4*c)-705*co
s(2*d*x+2*c)-227*sin(3*d*x+3*c)-960*cos(d*x+c)-90*sin(d*x+c)-320*cos(3*d*x+3*c)-510)/(cos(3*d*x+3*c)+3*cos(d*x
+c))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 220 vs. \(2 (105) = 210\).

Time = 0.26 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.85 \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {2 \, a^{3} \cos \left (d x + c\right )^{5} + 7 \, a^{3} \cos \left (d x + c\right )^{4} - 22 \, a^{3} \cos \left (d x + c\right )^{3} - 102 \, a^{3} d x - 4 \, a^{3} + {\left (51 \, a^{3} d x + 77 \, a^{3}\right )} \cos \left (d x + c\right )^{2} - {\left (51 \, a^{3} d x - 100 \, a^{3}\right )} \cos \left (d x + c\right ) + {\left (2 \, a^{3} \cos \left (d x + c\right )^{4} - 5 \, a^{3} \cos \left (d x + c\right )^{3} + 102 \, a^{3} d x - 27 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{3} + {\left (51 \, a^{3} d x - 104 \, a^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) + {\left (d \cos \left (d x + c\right ) + 2 \, d\right )} \sin \left (d x + c\right ) - 2 \, d\right )}} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/6*(2*a^3*cos(d*x + c)^5 + 7*a^3*cos(d*x + c)^4 - 22*a^3*cos(d*x + c)^3 - 102*a^3*d*x - 4*a^3 + (51*a^3*d*x +
 77*a^3)*cos(d*x + c)^2 - (51*a^3*d*x - 100*a^3)*cos(d*x + c) + (2*a^3*cos(d*x + c)^4 - 5*a^3*cos(d*x + c)^3 +
 102*a^3*d*x - 27*a^3*cos(d*x + c)^2 - 4*a^3 + (51*a^3*d*x - 104*a^3)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x +
 c)^2 - d*cos(d*x + c) + (d*cos(d*x + c) + 2*d)*sin(d*x + c) - 2*d)

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**4*sin(d*x+c)**4*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.39 \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {2 \, {\left (\cos \left (d x + c\right )^{3} - \frac {9 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} - 9 \, \cos \left (d x + c\right )\right )} a^{3} + 3 \, {\left (2 \, \tan \left (d x + c\right )^{3} + 15 \, d x + 15 \, c - \frac {3 \, \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2} + 1} - 12 \, \tan \left (d x + c\right )\right )} a^{3} + 2 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, d x + 3 \, c - 3 \, \tan \left (d x + c\right )\right )} a^{3} - 6 \, a^{3} {\left (\frac {6 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} + 3 \, \cos \left (d x + c\right )\right )}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/6*(2*(cos(d*x + c)^3 - (9*cos(d*x + c)^2 - 1)/cos(d*x + c)^3 - 9*cos(d*x + c))*a^3 + 3*(2*tan(d*x + c)^3 + 1
5*d*x + 15*c - 3*tan(d*x + c)/(tan(d*x + c)^2 + 1) - 12*tan(d*x + c))*a^3 + 2*(tan(d*x + c)^3 + 3*d*x + 3*c -
3*tan(d*x + c))*a^3 - 6*a^3*((6*cos(d*x + c)^2 - 1)/cos(d*x + c)^3 + 3*cos(d*x + c)))/d

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.57 \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {51 \, {\left (d x + c\right )} a^{3} + \frac {2 \, {\left (51 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 153 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 289 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 459 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 501 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 511 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 327 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 189 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 80 \, a^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(51*(d*x + c)*a^3 + 2*(51*a^3*tan(1/2*d*x + 1/2*c)^8 - 153*a^3*tan(1/2*d*x + 1/2*c)^7 + 289*a^3*tan(1/2*d*
x + 1/2*c)^6 - 459*a^3*tan(1/2*d*x + 1/2*c)^5 + 501*a^3*tan(1/2*d*x + 1/2*c)^4 - 511*a^3*tan(1/2*d*x + 1/2*c)^
3 + 327*a^3*tan(1/2*d*x + 1/2*c)^2 - 189*a^3*tan(1/2*d*x + 1/2*c) + 80*a^3)/(tan(1/2*d*x + 1/2*c)^3 - tan(1/2*
d*x + 1/2*c)^2 + tan(1/2*d*x + 1/2*c) - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 17.33 (sec) , antiderivative size = 317, normalized size of antiderivative = 2.66 \[ \int (a+a \sin (c+d x))^3 \tan ^4(c+d x) \, dx=\frac {17\,a^3\,x}{2}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {a^3\,\left (153\,d\,x-378\right )}{6}-\frac {51\,a^3\,d\,x}{2}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\left (\frac {a^3\,\left (153\,d\,x-102\right )}{6}-\frac {51\,a^3\,d\,x}{2}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (\frac {a^3\,\left (306\,d\,x-306\right )}{6}-51\,a^3\,d\,x\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {a^3\,\left (306\,d\,x-654\right )}{6}-51\,a^3\,d\,x\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (\frac {a^3\,\left (510\,d\,x-578\right )}{6}-85\,a^3\,d\,x\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {a^3\,\left (510\,d\,x-1022\right )}{6}-85\,a^3\,d\,x\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (\frac {a^3\,\left (612\,d\,x-918\right )}{6}-102\,a^3\,d\,x\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {a^3\,\left (612\,d\,x-1002\right )}{6}-102\,a^3\,d\,x\right )-\frac {a^3\,\left (51\,d\,x-160\right )}{6}+\frac {17\,a^3\,d\,x}{2}}{d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^3} \]

[In]

int((sin(c + d*x)^4*(a + a*sin(c + d*x))^3)/cos(c + d*x)^4,x)

[Out]

(17*a^3*x)/2 + (tan(c/2 + (d*x)/2)*((a^3*(153*d*x - 378))/6 - (51*a^3*d*x)/2) - tan(c/2 + (d*x)/2)^8*((a^3*(15
3*d*x - 102))/6 - (51*a^3*d*x)/2) + tan(c/2 + (d*x)/2)^7*((a^3*(306*d*x - 306))/6 - 51*a^3*d*x) - tan(c/2 + (d
*x)/2)^2*((a^3*(306*d*x - 654))/6 - 51*a^3*d*x) - tan(c/2 + (d*x)/2)^6*((a^3*(510*d*x - 578))/6 - 85*a^3*d*x)
+ tan(c/2 + (d*x)/2)^3*((a^3*(510*d*x - 1022))/6 - 85*a^3*d*x) + tan(c/2 + (d*x)/2)^5*((a^3*(612*d*x - 918))/6
 - 102*a^3*d*x) - tan(c/2 + (d*x)/2)^4*((a^3*(612*d*x - 1002))/6 - 102*a^3*d*x) - (a^3*(51*d*x - 160))/6 + (17
*a^3*d*x)/2)/(d*(tan(c/2 + (d*x)/2) - tan(c/2 + (d*x)/2)^2 + tan(c/2 + (d*x)/2)^3 - 1)^3)